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Strain Energy Functions of Rubber. I. 
Characterization of Gum Vulcanizates 

A. G. JAMES, A. GREEN, and G. M. SIMPSON, Dunlop 
Research Center, Kingsbury Road, Erdington, Biwninghum, England 

synopsis 

A plot of principal stress difference versus principal extension ratios has been used as a 
graphic representation of general deformation. Two analytic forms of the strain energy 
function for isotropic, incompressible materials are suggested. These involve five or nine 
terms, the coefficients of which are found by regression to the general deformation plot. The 
resulting stressstrain equations are used to predict particular deformations, for example, 
simple extension, and are also evaluated in model engineering design experiments. These 
experiments use iterative techniques to  predict the shapes and pressures of inflated diaphragms 
and tubes, and it is shown that the equations lead to accurate results even at  relatively high 
extensions. 

INTRODUCTION 

In  rubber engineering, computer-oriented iterative techniques and methods 
have led to the possibility of solving more complex design problems. The ac- 
curacy of these techniques depends, however, on the accuracy to which the 
elastic nature of the design material can be defined, that is, on the accurate 
knowledge of the strain energy function of the deformation of the material or 
the stress-strain equations which are derived from it. 

There are two main approaches in defining constitutive equations to describe 
the elastic nature of rubber-like materials. The molecular approach considers 
the response of the molecular network to deformation. Typically, there is the 
Gaussian theory where elasticity parameters are calculated from such quantities 
as finite molecular length and molecular weight between crosslinks. There is 
also the phenomenologici approach where elasticity theory is modified often 
intuitively and a postulated form is fitted to experimental results by regression. 

Because of the high extensibility of these materials and because of nonlinear 
force-deformation relationships up to these high extensions, a dilemma is en- 
countered when trying to define a strain energy function or stress-strain equa- 
tion. The particular constitutive equation will contain one or more constants 
which must be determined, and the dilemma arises when the investigator is 
forced to choose a particular type of deformation under which the constants are 
to be calculated. 

Many forms of strain energy function have been postulated with constants 
which adjust to fit the shape of the stress-strain curve in, say, simple extension. 
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Some of these will be described later. All this procedure proves is that regression 
techniques work. If the regression had been performed to data in.pure shear, 
an equally good fit would have been obtained with an entirely different set of 
“material” constants. 

To overcome this, many investigators have included experimental data from 
more than one type of deformation in their regression analysis, in order that 
their postulated form of strain energy function may be shown to be as general 
as possible. Rivlin and Saunders’ included simple extension and uniaxial com- 
pression on the same diagram. Other authors have looked at  combined tension 
and extension, inflation and torsion, and so on. 

However, as Treloar points out,2 the process of modifying or correcting a strain 
energy function to suit a set of data is nothing more than the “three-dimensional 
analogue of simple curve fitting.’’ Thus, until a generalized molecular hypothe- 
sis is found, any phenomenologic strain energy function that is postulated is 
merely a convenient mathematical representation, and no meaning should be 
attached to the numerical constants over and above that of simpler regression 
coefficients. 

Having recognized this fact, the problem of finding stress-strain equations or 
strain energy functions for a particular material is simplified to finding an ex- 
perimental method which involves general deformation and a regression equation 
which contains enough terms to fit accurately to the results of this experiment. 
The test of a particular form is, then, the success with which it can be applied 
to practical situations. 

This paper goes on to describe such an experimental method and suggests a 
graphic form for presentation of the results. Many of the strain energy functions 
which have been proposed in the literature are judged against this criteria. 
Finally, functions are suggested which have proved to be accurate in a number 
of practical tests. 

GENERAL HOMOGENEOUS STRAIN 

Elasticity Theory 
When a body is deformed, the elastic strain energy W may be expressed in 

terms of the strain invariants I1, Iz, and Ia: 
m 

w = Cfjk(I1 - 3)‘(I2 - 3)’(Ig - . (1) 
i j k = O  

where I I ,  Iz, and l a  are defined as the trace, cofactor trace, and determinant of 
the covariant strain tensor y, where 

y =  :z :I 
0 An2 

and A f  A,, and A k  are the principal extension ratios; Cfjk are constants. 
Thus, 

11 = Tr(y) = A t 2  + hj2 + h k 2  

1 2  = Tr(c0-y) = kf2Aj2  + Aj2Ak2  + A k 2 k f 2 *  (2) 

la = Det. y = A f 2 A j 2 h k 2  
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The principal true stress u for pure homogeneous deformation of an isotropic 
elastic material is obtained form W: 

From eqs. (l), (2), and (3), it can be shown that the difference between two 
orthogonal stresses takes the form 

where for incompressible materials 1 3  = 1.0. 

Pure Homogeneous Strain 
For general homogeneous strain, the three principal extension ratios XI, X2, 

and X3 may take any value consistant with the incompressibility condition 

x1x2x3 = 1. 

Thus, if any two are considered as independent variables, the third is necessarily 
determined. Treloar4 and Rivlin and Saundersl described apparatus and ex- 
periments to achieve just such independent variation of two of the three principal 
orthogonal extension ratios; and recently these ideas were put on a sound en- 
gineering basis by Kawai et al.5 A similar apparatus has been constructed and 
is in use in Dunlop Ltd., Central Research and Development Division. 

EXPERIMENTAL 
Photographs of the apparatus and a test piece extended to X = 3.5 in two 

directions are given in Figure 1. The apparatus is designed to impart inde- 
pendently controlled strains to a square test piece such that the two maximum 

(8)  

Fig. 1 (wntinued) 
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(b) 

Fig. 1. (a) General view of biaxial tensile test apparatus. (b) Close-up of test piece extended 
to = 3.5 in two directions. 

stresses are a t  right angles. This is achieved by having two moving cross 
heads incorporating sliding clamps which grip the specially designed test piece 
a t  seven points along each side. The clamps are mounted on roller bearings so 
that they can move freely along the cross heads and can therefore accommodate 
the deformation of the orthogonal direction. The points a t  which the test 
piece is gripped are much thicker than the test area, so that as the test piece 
is extended, the strain occurs in the test area rather than at the clamps. How- 
ever, the thicker edges are “scalloped” to within l mm of the test piece edge such 
that their effective contribution to the total cross section is less than 5%. A 
lithographic plate is used to draw a grid of 2 cm2 (subdivided into 2-mm squares) 
on the test piece to facilitate strain measurement. In Figure 1, the regularity 
of the grid is an indication of the homogeneity of the strain. 

The moving cross heads slide on linear bearings and are moved by lead screws 
driven by motors through chain drives. The loads are measured by paired load 
cells connected by universal joints to the “fixed” cross heads. The electrical 
output from each pair of load cells is fed to a digital meter which displays in- 
dividual output or the sum of the outputs of the paired load cells. At present, 
a thermal chamber incorporating a remote strain measurement technique is 
under construction. 

Thus, two principal extension ratios, X1 and hz, can be selected independently 
up to a maximum of 3.5 in each direction on the standard test piece (10 cm X 10 
cm) . 

The general homogeneous strain experiment yields values of the applied orthog- 
onal engineering stresses f1, f2 at extensions Al, X2. It is also known that fa, the 
stress in the thickness direction, is zero and A3 = 1/X1X2 in an incompressible 
material. 
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TABLE I 
Natural Rubber Vulcanizate-Compounding Details8 

Parts per 
hundred of 

Ingredient polymer 

Natural rubber 100.00 
Sulfur 2.50 
CBS 0.50 
Stearic acid 2.00 
Zinc oxide 5.00 
Mineral oil 5.00 
Nonox ZA 0.15 
Ble 25 0.85 

The vulcanizate was cured for 50 min at 135°C. 

The principal true stresses are calculated remembering that 

ui = fdi. 
The experimental results should satisfy eq. (4), although the choice of axes 
is entirely arbitrary and ut and uj may be taken to be ul, u2, or u3. 

RESULTS 

A sulfur-cured natural-rubber test piece was used in the general homogeneous 
strain experiment ; the compounding details and conditions of vulcanization are 
given in Table I. The test piece was stress softened by stretching it ten times 
to the maximum deformation, and then forces were measured a t  a number of 
fixed values of X1 in the range X2 = ldz+ X1. The test piece was allowed 
approximately 5 min to relax to  a quasi-equilibrium state a t  each measurement. 
The strain in the thickness direction was calculated from the incompressibility 
condition. Forces were converted to engineering stresses and then true stresses. 
Allowance was made for the small effect of the clamping edge on the cross- 
sectional area. 

In  Figure 2, the experimental measurements are presented as suggested by 
Kawai et a1.,6 that is, ul, u2 is plotted as a function of X2 for constant values of 
XI. The (0) symbols in Figure 2 represent data plotted such that the arbitrary 
choice ut  = (rl, uj = u2 is made and the (X )  symbols represent data plotted such 
that ui  = ul, uj = u3 = 0. This plot was taken as a criterion of general homoge- 
neous strain, and many of the suggested f o r m  for general stress-strain equations 
have been weighed against this criterion. The experimental data are tabulated 
in Table 11. 

Choosing a Regression Equation 
The purpose of the work described in this paper was to decide upon an analytic 

form of stress-strain equation suitable for use in design calculations. However, 
W has been expressed as an infinite series and eqs. (4) are only useful if an 
empirical form for bW/bIl and bW/b12 can be found. A number of forms 
suggested in the literature have been examined. These equations were examined 
against the results of the general homogeneous strain experiments and against 
criteria which have been used by other workers; for example, the stress-strain 
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TABLE I1 
PHS Plot Experimental Data Natural-Rubber Gum 

Ex tension 
ratio 

A1 

Extension 
ratio 

A2 

1.3 
1.3 
1.3 
1.3 
1.3 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.7 
1.7 
1.7 
1.7 
1.7 
1.7 
1.7 
1.7 
1.7 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
3.0 

0.93 
1.0 
1.1 
1.2 
1.3 
0.95 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
0.95 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
0.93 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
0.91 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
0.86 

Engineering 
stress 

Fd-40, MN/m2 

0.366 
0.422 
0.450 
0.497 
0.525 
0.563 
0.572 
0.600 
0.628 
0.647 
0.675 
0.685 
0.666 
0.685 
0.722 
0.741 
0.760 
0,769 
0.788 
0.807 
0.816 
0.825 , 

0.844 
0.863 
0.882 
0.900 
0.919 
0.928 
0.947 
0.957 
0.966 
0.985 
0.994 
1.032 
1.041 
1.051 
1.088 
1.097 
1.107 
1.126 
1.144 
1.154 
1.163 
1.173 
1.191 
1.210 
1.238 
1.257 
1.266 
1.276 
1.304 

Engineering 
stress 

F2/A0, MN/m2 

0.084 
0.235 
0.338 
0.431 
0.516 
0.216 
0.300 
0.413 
0.507 
0.572 
0.638 
0.685 
0.281 
0.356 
0.469 
0.553 
0.610 
0.666 
0.732 
0.769 
0.816 
0.338 
0.441 
0.525 
0.591 
0.657 
0.713 
0.760 
0.807 
0.854 
0.900 
0.938 
0.985 
0.441 
0.553 
0.619 
0.694 
0.741 
0.797 
0.844 
0.891 
0.928 
0.976 
1.013 
1.069 
1.107 
1.154 
1.219 
1.257 
1.294 
0.488 

(continued) 
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TABLE I1 (continued) 

Extension Extension Engineering Engineering 
ratio ratio stress stress 

X1 X 2  FIIAo, MN/m2 F2/Ao, MN/me 

3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 
3.5 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
0.84 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 

1.313 
1.345 
1.360 
1.388 
1.426 
1.463 
1.491 
1.510 
1.557 
1.604 
1.651 
1.548 
1.576 
1.613 
1.642 
1.679 
1.717 
1.745 
1.763 
1.801 
1.848 
1.895 
1.970 
2.064 
2.139 

0.638 
0.769 
0.872 
0.957 
1.060 
1.154 
1.248 
1.341 
1.444 
1.557 
1.670 
0.544 
0.722 
0.872 
0.985 
1.079 
1.182 
1.276 
1.369 
1.473 
1.576 
1.707 
1.838 
1.998 
2.186 

curves in simple extension, pure shear, and equibiaxial extension and the Mooney- 
Rivlin plot [fl(bW/Wl + 1/X bW/bI,)] versus 1/X for tension and compression. 
As a further constrain on the acceptability of any particular form, model design 
experiments have been considered in which rubber is deformed in a general and 
complex way. These experiments involve the prediction of shapes, sizes, and 
pressures of diaphragms and tubes which were inflated to fixed surface strains. 

It was possible to eliminate many of the suggested forms by considering the 
results of Kawai et aL6 for general homogeneous strain where bW/bIl was shown 
to depend on I1 and I, .  Many of the suggested forms7-11 show bW/bIl or 
bW/bIz or both to be independent of either or both of the strain invariants. As 
the present investigation confirmed the results of Kawai, these forms were 
eliminated from this investigation. 

Another type of approach to  this problem has been suggested by Valanis and 
LandeII2 and Ogden113 where the strain energy function was redefined in terms 
of strains or extension ratios rather than in terms of strain invariants. Kawai 
et a1.6 criticized the Valanis-Landel hypothesis for the use of the empirical 
relation 

W’(X) = 2~ In X 

in that it did not adequately represent the strip biaxial data of Kawai. This 
empirical substitution also leads to  a stress-strain equation involving only one 
material constant. In  this investigation, i t  was found that to predict both size 



2040 JAMES, GREEN, AND SIMPSON 

Fig. 2. Pure homogeneous strain plot (PHS plot) for NR gum. The regression lines are 
Ab- calculated using the third-order invariant approximation of the strain energy function. 

scissa: extension ratio XZ; ordinate: stress ui - uj (MN/m2). 

and shape in our model idation experiments it was necessary to have stress- 
strain equations containing at  least two material constants. However, the con- 
dition of separability of strains resulting in stress difference equations of the form 

Qll - IT22 = xlW~(x1) - X2Wt(X2) 

would suggest that the lines on the graph Figure 2 should be independent of XI. 
By shifting these lines vertically, this is seen to be true for this material over 
the range of deformation examined, and this also applies to the form suggested 
by Ogden. A study of the transposition of these lines may lead to a more useful 
empirical form of the Valanis-Landel hypothesis. 

So far, none of these suggested modifications of elasticity theory has proved 
sufficiently general for our purposes. A more rewarding approach was suggested 
by Tschoegl14 and Bidemann,15 this involved strict adherence to elasticity theory, 
and more accurate approximation to the quantities bW/bI1 and bW/bI2 being 
obtained by including higher order terms from the expansion of the strain energy 
function. 
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Approximating the Strain Energy Function 

For incompressible materials (I3 = 1.0), the strain energy function eq. (1) 
takes the form 

OD 

w = c,, (11 - 3)'(Iz - 3)'. . . (5)  
i j = O  

This expands as follows: 

w = cio(Ii - 3) + coi(1z - 3) + Cii(I1 - 3)(1z - 3) 

+ Czo(I1 - 3)2 + Cm(Iz - 3)2. - - etc. 

This series may be truncated according to either of the following conventions: 
(Note: The term Coo is always taken to be zero.) 

(a) Orders of Invariants 

First Order (Including only First-Order Terms in (Il - 3) and (Iz - 3)) 

w = ClO(I1 - 3) + COl(1Z - 3) 

This results in the Mooney stress-strain equation. 

Second Order (Including up to Second-Order Terms in ( - - 3) and (I2 - 3)) 

w = Clo(I1 - 3) + Col(12 - 3) + Cii(I1 - 3)(Iz - 3) 

i + Czo(I1 - 3 ) 2  + Cm(1z - 3)2 .  

Third Order (Including up to Third-Order Terms in (Il - 3) and (Iz  - 3) 

w = Clo(I1 - 3) + coi(1z - 3) + cii(Ii - 3)(Iz - 3) 

+ czo(11 - 3)' + c02(1z - 3)2 $- czi(11 - 3)'((Iz - 3) 

+ c12(1l - 3)(Iz - 3)' + c30(11 - 3)3 + - 3)3 

(b)  Order of Deformation 

It is also possible to choose terms out of the expansion of W such that only cer- 
tain orders of deformation (i.e., powers of A) are included. Sato16 has truncated 
the series by taking terms which include (a) only squares of the extension ratios, 
(b) squares and fourth powers, (c) squares, fourth, and sixth powers, and so on. 
If eq. (5 )  is expanded in this way, which will be called the deformation approxi- 
mation, then the first-, second-, third-, and fourth-order approximations are as 
follows: 

First Order 

w = CIO(I1 - 3). 

This leads to the simple Gaussian stress-strain equation 

U l  - a2 = ClO(A12 - A?). 
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Second Order. The terms contained in the expansion of W are 

1st order Clo(ll - 3) 

2nd order CZo(11’- 3)2 

COlVZ - 3) 

Third Order. The terms contained in the expansion of W are 

1st order CO(11 - 3) 

2nd order Cz0(I1 - 3)2 

COl(lZ - 3) 

3rd order Cao(ll - 3)3 

cii(1i - 3)(1z - 3) 

Fourth Order. The terms contained in the expansion of W are 

1st order ClO(I1 - 3) 

2nd order Czo(ll - 3)2 

COl(1Z - 3) 

3rd order c30(11 - 3)3 

Cii(1i - 3)(1z - 3) 

4th order Cm(1, - 3)4 

czi(1i - 3)’(1z - 3) 

COZ(1Z - 312 

There are certain observations which can be made about this method of ap- 
proximation referred to in future as deformation approximation. First-order 
deformation approximation results in the Gaussian form, whereas invariant 
approximation does not. Conversely, the Mooney equation is not a logical 
approximation in terms of deformations. 

Comparing the Different Approximations 

I n  order to possess generality, the constants in a particular form of strain 
energy function or stress-strain equation must represent experimental data 
involving pure homogeneous strain, and the greater the range of these data, the 
better. In  the section on general homogeneous strain, an experiment to obtain 
such data was described. Figure 2 is a graphic representation of these data 
(PHS plot-pure homogeneous strain) obtained over as large a range as was 
practically possible. The solid lines in Figure 2 are regression lines which were 
calculated from stress-strain equations derived from an expansion of 

m 

w = c Cf,(Il  - 3)t (I2 - 3)’ 
i j = O  

as far as terms of the third order in the invariants. This involves nine constants 
Cf, .  
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60 

5 0  

4.0 

313 

2 .o 

I .o 

Of 
Fig. 3. PHS plot for NR gum using Mooney function. Abscissa: extension ratio At; ordinate: 

stress ui - uj (MN/m2). 

It can be shown that other forms of expansion of W will predict the form of the 
PHS plot with varying degrees of accuracy; for example, the so-called Mooney 
equation, 

Q1 - Q2 = 2(A12 - x22) lCl0 + x 3 2  COl I 
which involves only the two constants Clo and Col. 

In  Figure 3, it is shown that the general shape of the PHS plot is predicted by 
this equation, although the correspondence of the regression lines and the ex- 
perimental data is not as good as in Figure 2. If the overall range of deformation 
is reduced, the fit is better. It can also be shown that the Mooney equation 
which fits these data will successfully predict such things as the shapes of inflated 
diaphragms for low crown strains and the initial region (A = 1 -+ 1.5) of the 
force extension curve in simple extension. However, for the purpose for which 
this work was initiated, as comprehensive a PHS plot as possible was required, 
and so stress-strain equations containing enough curve-fitting parameters to 
give accurate regression to these data were sought. 

In  the work reported here, the two forms of approximation have been com- 
pared by determining the accuracy with which a particular form of stress-strain 
equation represents the PHS plot. The stress-strain equation resulting from 
each strain energy function approximation was used to perform a regression to 
the data obtained with a natural-rubber gum vulcanizate as shown in Figure 2. 
The residual deviation of the data about these regression lines is calculated so 
that the “goodness of fit” can b.e judged. 

Shown in Table I11 are the regression constants obtained with. the various 
approximations of W described earlier, together with the residual deviations of 
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the data contained in Figure 2 about the regression lines. The table shows that 
as the order of terms included increases, the residual deviation decreases, in- 
dicating a better fit to the PHS plot. The deformation approximations are 
seen to  be somewhat more successful than the invariant approximations, achiev- 
ing better fits with equations containing fewer terms. 

The stress-strain relations suggested by the coefficients in Table I11 have been 
used in a number of model design experiments. All of these relations were found 
to  be suitable for the prediction of experimental results, although the higher 
order equations gave greater accuracy and in some cases better extrapolation 
outside the range of experimental strains encompassed by the PHS plot. Some 
typical experimentd predictions are described in the next section and illustrated 
using the most successful stress-strain forms. 

THE APPLICATION OF STRESS-STRAIN RELATIONS 
TO DESIGN CALCULATIONS 

Experiments in Simple Tension 

Consider the condition for simple extension of a strip of rubber substituted 
into eq. (4), namely, 

U l  = FIX1 u2 = 0 1.2 = l/dG 

or 

a w l  b12 
bW 

F = ( X l  - x 1 - 2 )  - + 1/x1 - I bIl 
where F is the stress referred to the original cross-sectional area. Using this 
equation and some form of the strain energy function, it is a simple matter to  
compute a simple extension stress-extension ratio curve. A number of these 
were computed and compared to experimental results obtained by extending a 
strip of natural-rubber gum in an Instron tensile tester. 

The experiment was performed incrementally allowing 5 mins relaxation a t  
each increment. It was assumed that this gave the same sort of quasi equilib- 
rium data obtained in the general homogeneous strain experiment described 
earlier. 

Figure 4 shows the comparison between simple extension experimental results 
to X = 5.0 and results predicted from the stress-strain relations calculated from 
the coefficients of Table I. These describe the PHS plot where extension ratios 
are less than 3.5. The relations with a lower residual deviation about the PHS 
plot gave a more accurate prediction of the experimental results. The best 
predictions are shown in the figure. The third- and fourth-order deformation 
approximations and the third-order invariant approximation accurately pre- 
dicted the experimental result within the range encompassed by the PHS plot 
(A <3.5). However, the third-order invariant approximation also extrapolated 
well outside this range. The odd behavior of the fourth-order approximation 
outside the experimental range is not necessarily significant. One must not 
lose sight of the fact that the equations are merely regression equations. TO fit 
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FXTFNWN R m  

Fig. 4. Stress vs. extension ratio for NR gum: (. . .) theory; (-) experiment. Abscissa: 
extension ratio XZ; ordinate stress ui - uj(NM/m2). 

more accurately in regions where data are available, terms in the equation can 
take signs which may result in apparent unusual behavior in regions where no 
data are available. 

Experiments in Equibiaxial Extension 

If an element at the crown of an inflated membrane is considered, the tensions 
in the latitudinal and longitudinal directions being Tl and T2 and the respective 
radii of curvature R1 and Rz, then these quantities are related to the inflation 
pressure P according to the equation 

P = Ti/& 4- Tz/R2 
at the crown Ti = Tz = T 

Ri = Rz = R 

:. P = 2T/R. 

If the thickness of the strained material is t then the stress at  the crown is given 

T/t = u 

by 

.*. u = PR/2t* * * (6) 
and for an incompressible material stretched equibiaxially by A, the third dimen- 
sion is reduced by 1 / A 2 ;  thus t = t , , /A2,  where t o  is the original thickness. Thus, 
the crown stress can be found for a particular crown strain providing P ,  R, and 
t,, can be measured. 

A diaphragm was inflated to a particular pressure and the crown-extension 
ratio A, was calculated from measurements of the vertical and horizontal distances 
between points on a grid. 

The radii of curvature were then calculated geometrically and the stress at  a 
particular extension calculated from eq. (6). A graph of the equibiaxial stress 
versus-extension ratio is shown in Figure 5 for the natural rubber gum vulcani- 
zate. The full line drawn through the experimental values was predicted using 
regression constants from Table I to calculate values of bW/bIl and bW/bI2 in 
the general stress-strain equation in its equibiaxial extension form : 
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2 3 4 
Fig. 5. Equibiaxial extension: (-) predicted curve; (X) - - - 

Again, the agreement between theory and experiment is excellent, and the 
line shown is the coincident predictions of the third- and fourth-order deformation 
approximations and the third-order invariant approximations. The lower-order 
approximations predicted the general shape of the curve but with a less accurate 
fit to the experimental values. 

The Mooney-Rivlin Plot 

A way of representing all the data of the above two sections is the so-called 
The general stress-strain equation can be rearranged Mooney-Rivlin plot. 

using the conditions for simple extension to the form 

also the same equation can be rearranged in the same way by substituting the 
conditions for equibiaxial extension, viz., 

~1 = FA1 X1 = A, Xz = XI 

to give 

~ / 2  I X  - A-2 I = aw/ail + i / ~ . a w / a ~ ~ - .  . (8) 

Equations (7) and (8) are identical, and so a graph of F / 2  (A - X-2 I versus 1/X 
can be made to include information from the measurements of both the above 
sections. 

Figure 6 is typical of such a plot and contains the same information as that 
contained in Figures 4 and 5. These plots have probably become accepted as a 
good criterion of a stress-strain equation because they show information from 
both simple tension and equibiaxial extension and have certain distinctive fea- 
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Fig. 6. The Mooney-Rivlin plot. Abscissa: l / h  (note change of scale at X = 1.0); ordinate: 
F / 2  (h -'/hz). 

tures, namely, the linear region a t  low simple extensions, the upturn a t  high 
simple extensions, and the plateau region in equibiaxial extensions. However, 
experimental data obtained as in the previous sections seem to indicate a dis- 
continuity a t  1/X = 1. This has recently been shown not to be true by Wolfe,16 
who demonstrated the continuity of the relationship in going from simple 
extension into uniaxial compression. Also, by the methods described above, 
it is difficult to get accurate information in the region 1 /X  + 1. 

The first-order invariant approximation, the so-called Mooney equation 
cannot predict all the features of this plot, and the two second-order approxima- 
tions resulted in equations which showed large discrepancies when fitted to  
the experimental data in this way. However, as can be seen from Figure 6, the 
approximations which were successful in the previous sections also reproduce 
the main features of this plot, the notable exception again being the failure of the 
fourth-order deformation approximation to predict high simple extensions. 
However, within the range of strains encompassed by the PHS plot, these three 
approximations showed reasonable accuracy. 

The Inflated Membrane 

Equations (4) and the procedure described earlier for finding the material 
constants give stress-strain relations which have been shown to be successful 
in describing certain experimental deformations. As a more practical test 
typical of engineering design, it was decided to use this equation to  predict the 
total profile of an inflated membrane which will necessarily involve a more 
general biaxial deformation. Appendix I gives a description of the numerical 
solution of the shape of an  inflated diaphragm. 

I n  the approach used successfully by Hart-Smith,ll the solution involved the 
use of first-order numerical integration as opposed to the more straightforward 
method of "approximating arcs." 

The method described in Appendix I incorporates techniques of both ap- 
proaches; and given the regression coefficients and the crown extension A,, we 
may predict the inflation pressure P and the shape of an inflated diaphragm. 

A computer program was written to  carry out the procedure described in 
Appendix I containing a subroutine to  plot out directly the profile relevant to a 
particular set of material constants. 
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Fig. 7. (a) NR gum diaphragm profiles calculated from invariant' approximations-crown 
strain X, = 3.0: (-S) theory; (. . . .) experiment. Abscissa: 1/X (note change of 
scale at = 1.0); ordinate: F/Z(k--1/X2). (b) NR gum diaphragm profiles calculated from 
deformation approximations-crown strain X, = 3.0: (-0-) theory; (. . . .) experiment. 
Abscissa: 1/X (note change of scale at X = 1.0); ordinate: F/2(X-* /Xz) .  

Equation (4) and the Table I1 coefficients were used to predict diaphragm 
profiles for a range of crown extensions up to A, = 4.0. These were compared 
with experimental profiles (obtained on the apparatus described above). In  
Figures 7A and B, profiles for A, = 3.0 calculated using the different approxima- 
tions of the strain energy function are compared with experiment. Again, the 
higher-order approximations are seen to be more accurate, although the difference 
is not so great a t  low extensions. Up to the maximum strains of the PHS plot 
which are greater than those experienced in most engineering practice, the higher- 
order approximations of the strain energy function give stress-strain equations 
accurate enough for most practical purposes. There is also good agreement 
between the predicted and experimentally measured inflation pressures. 

The Inflated Tube 

Another problem which can be solved by techniques similar to those described 
in the previous section is the longitudinal cross-sectional profile of an inflated 
tube, the ends of which are free to find their own position. Appendix I1 gives a 
description of the numerical solution of the shape of an inflated tube. 

The inflated tube apparatus consists essentially of two circular clamps, which 
hold a rubber tube onto mandrils attached to the load cell and cross head of an 
Instron tensile tester. One of the circular mandrils was such that air could be 
blown through it into the tube. The tubular sample was moulded to  give the 



2050 JAMES, GREEN, AND SIMPSON 

Fig. 8. Cross section of 

NSTRON CROSS-HFAR 

tube inflation apparatus. Abscissa: l / h  
h. = 1.0; ordinate F/2(h-lXe) .  

(note change of scale at 

-PREDICTED 
+ EXPERIMENTAL I 

Fig. 9. Profiles of inflated tubes-NR gum. 

cross section shown in Figure 8. The circumferential bars on the internal 
diameter at each end were located in grooves in the mandrils to give a positive 
grip. The tube was 1 mm thick along the length to be stretched and much 
thicker a t  each end. This gave an effective length for this extending portion of 
11.5 cm. 

The air pressure was measured with a pressure gauge and was controlled by a 
constant-pressure reducing valve. The experiments were performed so that the 
ends of the tube were always at  zero load. As the tube was inflated, this tended 
to push the jaws apart, so creating a “compressive” force and giving a negative 
load reading. The tube was then extended so that the load, as registered by the 
Instron load cell, was zero. The pressures were controlled to give a range of 
radial extensions for the tube. 

A grid on the surface of the tubular sample facilitated strain measurements. 
The inflated tubes were photographed and the negatives examined using an 
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inspection microscope. Using eqs. (4) and the material constants of Table I, 
theoretical profiles were plotted and compared with profiles obtained by the 
above method. 

Figure 9 shows three such predictions for the natural-rubber gum vulcanizate, 
obtained using the third-order invariant approximation. The three diagrams 
represent profiles obtained at  three different circumferential extension ratios 
A, = 1.99, 2.68, and 3.54. There is good agreement between experiment and 
theory not only in the shape of the profile, but also in the final length of the in- 
flated tube. The third-order and fourth-order deformation approximations 
give comparable accuracy, but the lower-order approximations result in some 
deviation from experimental values. 

CONCLUSIONS 
The foregoing results have shown that a good fit to general homogeneous strain 

data can be obtained by retaining higher-order terms in the expansion of the 
strain energy function. An expansion as far as the third order of invariants leads 
to stress-strain equations which can be used for the accurate solution of engineer- 
ing design problems even at strains outside the range encompassed by the PHS 
plot from which the nine coefficients in the equation were obtained. However, 
for most practical purposes, the expansion as far as the third order of deformation 
should be adequate. This contains the five terms Clo, Colt CU, Cm, and GO. 
These techniques can also be applied to filled vulcanizates, as will be described 
in part I1 of this series. 

Appendix I 

The Numerical Solution of the Shape of an Inflated Diaphragm 

Notation. The notation used in the theory that follows is presented below. 
Also, as an aid to the understanding of the “approximating arc” technique, an 
illustrative diagram (Fig. 10) is included. 

1“ 
CROWN 

Fig. 10. Half a meridional section scaled to clamp radius = 1. 
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N.B.: (1) Dashed symbols represent variables that have been nondimension- 
(2) Symbols with suffixes, e.g., xr’ ,  (T l ’ ) f ,  (A,),, etc., represent the alized. 

values of the variables at  particular points chosen on the sheet. 

W strain energy function 
G factor to nondimensionalize W (  = C,) 
P inflation pressure 
Tl meridional tension 
T2 circumferal tension 
~1 meridional curvature 
~2 circumferal curvature 
A1 meridional extension ratio 
A2 circumferal extension ratio 

strain invariants I2 I,> 
A, extension ratio under equibiaxial conditions at  the crown 
p radial displacement from the center of the uninflated sheet 
p t  radius of the clamp 
x horizontal displacement from the crown of the inflated shape 
y vertical displacement from the crown of the inflated shape 
e angular displacement measured from the y-axis 

Theory 

The basic equations used in this method are the stress/strain equations, 

TI = 2h*X3]X1~ - Xa211bW/bZ1 + Xz2 bW/bIlel- * .  (1) 

T2 = 2 h - ~ ~ [ ~ ~ 2  - XaB[lbW/bIl + x12 dW/bZ21. e (2)  

(3) 

2~zT1 = (4) 

where eq. (3) is from considerations of an element of double curvature and eq. (4) from con- 
siderations of a cap symmetrical about the y-axis. 
As in 11, we first nondimensionalize quantities where possible, i.e., (i) Divide linear dimen- 

sions x, y, p, R1, Rz, by pt, the radius of the clamp (where R1 = 1 / ~ 1  and Rz = 1 / ~ z  are radii 
of curvature), e.g., 

2’ = x / p t  

and the equilibrium conditions, 

 KIT^ + ~gTp = P. . . 

Ki’  = K I P (  

and 

pt’ = 1. 

N.B.: The quantities XZ,XZ,X~ will remain unchanged. 
(u) Divide W by G, TI and T z  by 2hG, and P by 2hG/pt. Thus, 

W’ = W / G  

T,‘ = Ti/2hG i = 1, 2 

P’ = Ppt/2hG. 
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Therefore, eqs. (1) to (4) become 

Ti’ = k31Ai2 - Aae(ldW’/bZ1 + Azz dW’/dZ*I. * .  

Tq’ = h31Aq2 - A,’lldW‘/dZi + X i 2  bW’/dZqI.. * 

K1’Tl’ - KZ‘TZ‘ = p’. . . 
~ K ~ ‘ T ~ ‘  = p’. . . 

Also, if we eliminate P‘ between (3a) and (4a) and rearrange, we have 

KI‘ = ~q ‘ (2  - Te’/Tl‘). . . (58) 

The problem now is to find the inflated shape and the nondimensionalized inflation pres- 
sure P’ of a diaphragm of unit radius such that the extension ratio a t  its crown is A,. TO do 
this, we proceed as follows: 

(i) The unit radius of the uninflated diaphragm is divided into n equal parts such that the 
length of each is e = l/n. It is assumed that each of these in a meridional section through 
the inflated shape may be considered to approximate to an arc of a circle, curvature ( ~ i ) ~ ,  

where i = 1 for the crown and i = (n + 1) for the point a t  which the material is clamped. 
(ii) The calculation of the shape is initiated at the crown where we have the equibiaxial 

conditions 

( A l l 1  = @Z)l = A,, (A311 = l / A c q  

  TI')^ = (TY‘)~ = Tc‘ 

(K1’)1 = ( K Z ’ ) ~  = CC‘. 

However, the curvature at the crown is not known and so to proceed, we must assume a 
value for K ~ ’  which may be corrected at a later stage. 

HareSmith and Crisp11 suggest an approximation to K ~ ’  based on the solution of the problem 
of a diaphragm of nonuniform thickness that on inflation takes the shape of a spherical cap, 
I.e., 

Ke’ = 2 d A ,  - l / A e .  

Now using either (la) or (2a), we may calculate T,’ and hence find a first approximation of 
P‘. Thus, from (4a), 

P’ = ~K,‘T,’. 

Also, since the height of the inflated shape is initially unknown, it is convenient to use the 
crown &s the origin of the x‘, y’ coordinate frame, thus, 

p1’ = 0 

XI’ = 0 

y1’ = 0 

e, = 0. 

When the calculation is complete, the inflated shape may be defined with respect to the center 
of the uninflated diaphragm by subtracting y’n+l from all values y,’, i = 1, 2.  . . . , (n + 1). 

(iii) To calculate the x’, y‘ coordinates of the next and subsequent point, the following 
procedure is applied. We have the geometric relationships (see Fig. 10) for i = 1, 2 . .  . ., 
(n - I), n 

P*+l’ = PI’ + e 

e,+l = e, + 88, 

where 68, = (AI~KI’), from the “approximating arc” assumption 

&+IJ = x,’ + 85,’ 
Y%+1’ = Y.‘ + 8Y*‘ 
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where 
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and 

6Yi = (cos (ei+d - cos @i)) / ( * l ’ ) ;  

( K Z ’ ) ~ + I  = sin (Bi+i) /z i+~’ 

(XZ)i+l = (z‘/d);+1. 

However, to find (AI);+I, we must use an iterative procedure starting with an approxima- 
tion for xi (see note on approximations). From (4a), we see that 

TI’ = P’/2Kz’. 

Now, (la) may be rearranged to form an iterative procedure, thus, 

where 

I*1 = x*12 + A22 + x**2 

and 

I*2 = x*1-* + x2-*  + x*s-p.  

The 1.h.s. of (6) will yield a new approximation to Xi, and the iterative process may be repeated 
until successive approximations agree to within defined limits (e.g., 10-4x1). 

Having found the value of ( h ) i + l ,  we may evaluate (Tz ’ ) ;+~  and using eqs. (2a) and 
(5a), respectively. 

At this stage, we know all the quantities at  the (i + 1)th point, and the process may be 
repeated to find the coordinates of the next and subsequent points, until either 

(i) h2 5 1 and i < (n)  

or 

(ii) i = (n) and # 1 

If one of these conditions is satisfied, we find the value of z’, say, Z‘FAC, which makes XZ = 1, 
using linear interpolation and use this to correct the original estimate of I(=’, thus, 

(K,’)NEW = (K~’)OLD.Z’FAC. 

The calculation is then repeated from the crown using the new K ~ ’  until 2,’ differs from unity 
only by narrow defined limits (e.g., %lo-‘). 

Note: On the choice of the original approximation to XI, it has been found that a good 
approximation (requiring two to three iterations to reach “true solution”) is given by 

(X*i)j+i = ( h ) j - 2  + 3J(h)j - (Ai)j-i l* 

This is, in fact, equivalent to fitting a parabola through the three points i = j - 2, j - 1, 
and j on a (+) plot and extrapolating to i = j + 1. 

Further, it has been found11 that to ensure the convergence of the iterative procedure for 
Xe > 5, it is necessary to average successive approximations. 

A computer program has been written to perform the solution method described and to 
draw the inflated shape on a digital plotter. 
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Appendix I1 

The Numerical Solution of the Shape of an Inflated Tube 

INTRODUCTION 
A method of solution to the problem of an inflated tube has been evolved using a similar 

approach to that applied to the inflated diaphragm. The problem is to find the longitudinal 
shape and the necessary inflation pressure ( P )  of a tube of given unstrained length (210) and 
radius (TO), such that the radius (rw) at the widest point (w) on the shape is a given constant 
and the radii at the ends are equal to the strained radius. 

This problem differs from that of the diaphragm in that, for the latter, (i) there is a condi- 
tion of equibiaxial stress at pole, i.e., 

A1 = x z  = Xe 

(ii) an adequate approximation to the curvatures 

(Ki = K p  = K C )  

a t  the pole is available; (iii) successively better approximations to the solution are obtained 
by simple scaling a t  the end of each contour calculation. 

Whereas for the tube (i) only one of the principal extensions 

(A2  = X w  = T w / d  

a t  the starting point (w) of the calculation is known, XI being unknown; (ii) no approxima- 
tion to one of the principal curvatures ( ~ 1 )  at W is available, although the other, ~ t ,  is given 
directly by 

K Z  at w = l/rw. 
(iii) Simple scaling cannot be used to obtain better approximations to the true solution. 

Thus, to solve the tube problem the following approach was taken: (i) Assume that the 
unstrained length, 210, of tube is allowed to vary, all other dimensions remaining fixed (i.e., 
radius, thickness); (ii) choose some approximation A, to XI at w and calculate the correspond- 
ing shape subject to the conditions at the widest and end points. It should be noticed that 
the unstrained length, 21., corresponding to this inflated shape will not be the same as 210 
unless Xo is a very good estimate; (iii) use interpolation/extrapolation and other techniques, 
on a (Aa, l/Za) plot, to  correct X. to give an unstrained length of 210. 

THEORY 

The Infiated Shape Calculation 
The equation and notation used in the following theory'are similar to those for the diaphragm. 

For further explanation, reference may be made to Appendix I and to Figure 11 of this paper. 

X' 

I c: - 1 + 
Fig. 11. Tube: l/, of a plane section through the axis of symmetry. Scaled to l / p  tube length 

= 1. 



2056 JAMES, GREEN, AND SIMPSON 

2uzT1 = P. (4 1 
As in the previous Appendix, we nondimensiondize quantities, in this case using half the 
tube length (i.e., lo) instead of the clamp radius as the linear factor, e.g., 

70’ = TO/& 

lo’ = 1 

2’ = x/lo 

Ki’ = K i l o  

Ti‘ = Ti/2hG 

P’ = P&/2hG 

W’ = W/G 

Thus, nondimensiondizing and eliminating P from (3) using (4), we have, from eqs. (1)-(4), 

Ti’ = X31kiz - X3*llbW‘/bZi + Xz’ bW‘/bZzl 

Tz’ = XalX2’ - X3zllbW’/bIi + Xi’ dw’/dzzI 
(la) 

( 2 4  

P‘ = 2~2’Tl’ (3s) 

(48) Ki’ = Kz’(2 - Tz’/Ti’). 

Also, we have the geometric relationships 

where 

(Xz)i+l = yitl’/ro‘. 

These equations may be solved using the techniques applied to the diaphragm solution, where 
for some approximation A,, to XI  at w, the corresponding I,’ is given by 

la’ = c(N - m) 
where N is the number of whole increments required during the computation to reach the 
region of the end clamp ( h ~  ‘V 1) and m is the fractional part of an increment required to fit 
the end point to the unstrained radius (A, = I). 
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Convergence to the “true” Solution 

We see that, from the section above, given any approximation A. to A1 at w, we may calcu- 
late an inflated shape (given A, and r0), an inflation pressure, and the corresponding unstrained 
length of the tube. The following section deals with a method of correcting A, to ensure 
convergence to the solution 1,‘ = lo‘ = 1.  

It 
has been found that, for the tubes used experimentally, the configuration (i.e., lo/ro * 3.5) 
is such that the “true” XI  is always significantly less than AZ at w (i.e., ~1 < KZ at w). Further, 
we see that at w, ~1 > 0 (i.e., w is a point of maximum width); thus, from (4a) we see that 

(i) The first stage of ensuring convergence is to limit the range in which A. may vary. 

for K I  = 0:  

2T1‘ - Tz’ = 0 ( 5 )  

where TI’ and Tz’ are given in terms of XI, Az, and the material constants. Now, eq. ( 5 )  may 
be solved by simple techniques, for Az = A, and given material constants, to give the solution 
A1 = AEl  say. 

(ii) However, for certain values of A, (usually >2) ,  it  has been found, for values of A, in 
the range, say, (Az, A t )  where A, < kt  < A,, that the contour shape when computed tends to 
oscillate, never satisfying the condition on the endpoint (i.e., is always greater than unity). 
In this case, the computation is ended at the point a t  which A2 is a minimum (i.e., when e 
is again zero) and the unstrained length to this point calculated and the information obtained 
is used to tighten the range in which k, may vary. Notice that A, may be considered to be 
an extreme of this case giving zero unstrained length. 

(iii) For At < A, < A,, we are able to compute shapes and values of I,‘ that satisfy the end- 
point conditions; and when four sets of A,, l/l,’ data, in this range, are available, a cubic 
curve can be fitted and a very close approximation to the “true” solution found. The cubic 
fitting may be repeated, if necessary, with the latest set of data replacing that most removed 
from the “true” solution, until the computed l’, agrees with unity to within close limits. 

The first approximation to A1 a t  w is taken to be A, and the corresponding I,’ calculated. 
Using linear interpolation, shown schematically in Figure 12, a second estimate may be found 
and, if necessary, the range in which A, may vary tightened. This is repeated until the four 
sets of data for the cubic fit are obtained. 

A computer program has been written to perform the solution as described and to draw 
the calculated inflated shapes on a digital plotter. 

An alternative method of solving this problem is given by Kydoniefs18 where the inflated 
shape is found by numerical integration rather by the “approximating arcs” method given 
here. However, the numerical integration becomes lengthy with more complicated strain 
energy functions. 

Thus, A, is restricted to vary in the range (XJ,). 

I I 
0 I P 

Fig. 12. Length approximation: (1) initially A, = A,; (2) used to tighten range; (3) 
further approximations in the (4) “proper” solution regions; used (5) with 1 for the cubic 
fit. 
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